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The DEC VMS operating system was developed in 1975 by the Digital

Equipment Corporation.  It was developed to run on Digital

Equipment Corporation’s VAX computer system (Virtual Address

Extension).  The new VAX system was designed to overcome memory

limitations that had existed on earlier computers by use of virtual

memory.  

Virtual memory creates the illusion of an extremely large memory.

It was began in 1969, and had been implemented by IBM, Honeywell,

and Sperry in large mainframe systems by 1972.  A technique called

demand-paged memory management was used for Virtual memory.(Bynon 1-

7) 

In virtual memory a virtual address space is created for the

machine.  As an example, if the VAX needed to process data and

instructions whose addresses are scattered throughout a four giga-

byte address space, it doesn’t need four gigabytes of physical mem-

ory.  The term virtual memory refers to the fact that something

that is virtual appears to be present but really isn’t.

Bynon 1-8

The goal the Virtual Address Extension (VAX) architecture was

intended for a family of computers that would span several decades.

(Bynon 1-7)  

VMS was developed concurrently with DEC’s VAX system.  The software

development—code named Starlet—began in June of 1975.  The project

plan was to create a new operating system for the Star family of



processors, but also could be extended to support many different envi-

ronments.  The hardware for the VAX system was designed to be cultur-

ally compatible with the PDP-11.  The software was designed to paral-

lel the hardware compatibility by providing compatibility with the

existing operating system, RSX-11M.  While the development of both

hardware and software was an effort of many people, some individuals

should be noted.  Roger Gourd led the project and software engineers

Dave Cutler, Dick Hustvedt, and Peter Lipman were technical project

leaders, each was responsible for a different part of the operating

system.  They simplified the earlier designs and and made key modifi-

cations to the highly complex memory management design and the process

scheduling of the system.  (DECLit p12, 14)

The design and structure of DEC VMS.

The VMS (Virtual Memory System) was developed simultaneously with

the VAX hardware.  VMS is a layered system, with the layers as con-

centric rings.  These rings provide different levels of access

privileges, with center ring having the most privileges, the outer

ring, least.  The kernel lies at the center and is the heart of the

operating system.  (Bynon 2-2)

The Kernel is comprised of three components that perform the major-

ity of the operating system’s resource-oriented tasks.  The first

is the  input/output (I/O) subsystem, second is the job scheduler,

third is memory management.

The I/O subsystem consists of device drivers (low level, hardware



specific programs) and several key system services.  The most

notable  system service is $QIO, it reads to and writes from  phys-

ical devices on behalf of software requests.  All outer layers of

the operating system access the device driver through the $QIO sys-

tem service.  Servicing device interrupts and logging device time-

outs and errors are chores also handled by the I/O subystem.

The job scheduler is responsible for selecting processes for execu-

tion or processing.  Since it synchronizes processes for execution

by continuously checking process state transitions and process pri-

orities, it is kept constantly busy and performs many duties at

timed intervals, such as waking hibernating processes and switching

in a new process to be executed when another’s quantum of time has

expired.

Memory management is comprised of the swapper and the page fault

handler.  This is the most complex mechanism of the VMS kernel and

has four basic responsibilities:

• To give each process its share of physical memory 

• To translate virtual memory addresses to physical addresses.

• To allow selective sharing of data among different processes.

•To shield process data (memory) from other processes.

The swapper’s main responsibility is to help the system completely

use the available physical memory, while the page fault handler

implements the software virtual memory support.  (Bynon 2-3)



Also in the kernel are system services.  System services are in

fact a group of procedures that perform tasks such as controlling

I/O, maintaining resources for processes, and allowing interprocess

communication.  While most system services are used by VMS are for

the use of processes, there are also many system services for use

in general programming.  

The Record Management Services resides in a layer around the kernel

known as the Executive mode.  Tasks such as reading, writing, cre-

ating, and deleting files are handled by record management services.

Like system services, record management is a group of procedures

that that hide lower level tasks from the user.  These procedures

provided at two distinct levels; RMS routines themselves and through

disk/tape ancillary control processes (ACPS)Ancillary control

processes are separate processes running on the system.   They per-

form the actual mass storage transfer.  This helps  to avoid access

conflicts between processes.  (levy 275)

The outermost layer of VMS is the user interface.  Known as the

command line interpreter (CLI).  Although other CLI’s exist, the

most popular is the Digital Command Language (DCL).  The CLI pro-

vides a user interface with the operating system and its facili-

ties.  Services provided by the CLI call system services, RMS, or

external images, including VMS utilities and userwritten programs.

As in UNIX other user interfaces (shells) can be developed.  (Bynon



2-4)

VMS process control and scheduling issues.

Like UNIX, a program in execution is called a processes.  These are

selected by the scheduler for execution.  They form the body from

which all useful work is accomplished.  Also as in UNIX a process

can create other processes in VMS the parent process is called the

creator, and its subprocesses are called descendants.

Collectiively, the creator, descendants and its subprocesses, are

known as a job.  The programs that runs within the context of a

process to are referred to as executable images.  (Bynon 2-4)

Like processes in UNIX, VMS processes have a state which defines

the location in physical memory where instructions and data are

stored, as well as the program counter, and contents of the hard-

ware registers of the process.

The layers, or rings of protection roughly correspond to access

modes.  These four modes, known as Kernel, Executive, Supervisor,

and User, give the VAX processor its basic protection.

Instructions may be executed by aprocess in one of these modes.

There are different levels of  privileges a processes can have for

accessing memory and the executing certain types of instructions

depending on its mode.  As an example, the instruction to halt the

processor can be executed only in the Kernel mode.  (Levy p274)



VMS Process scheduling

In the VMS operating system, the scheduler maintains a data struc-

ture called the software process control block (PCB).  The software

PCB is part of the context for every process.  It describes the

condition of a process at any point in time.  It contains the

user’s privileges, accumulated resource usage information, user

name, and so on.  The scheduler maintains a record of the condition

of processes by using queues of the software PCBs arranged by the

proces state and priority.  All processes have their software PCB

linked onto one of the scheduler’s queues.  (Levy p303)

VMS uses priority scheduling to decide when processes run.  Each

process is assigned a priority between 0 and 31.  These priorities

are defined by the operating system.  When a process is ready to

run, it is placed on one of the 32 corresponding runnable priority

queues maintained by the scheduler for executable processes.  When

choosing a new process to run, the scheduler always takes the

process from the head of the highest nonempty priority queue.  The

software PCB of each process contains a pointer to its hardware

PCB, which is used in performing the context switch.

VMS avoids the problem of highest-priority processes executing for-

ever by changing process priorities dynamically.  A process is

given a base priority when it is created.  The base priority

assigned to the user by the system manager.  A processes that is in

execution can have its priority raised or lowered, depending on its



activity.   If a process computes until its quantum expires, its

priority is reduced, and it is placed at the tail of a lower prior-

ity queue.  A process is never lowered below its initial priority.

A waiting process’s priority is raised, if for example there is an

I/O request.  Then it would have a greater chance of computing.

The events that cause a priority  change include:

1.execution (priority is decreases when a process is placed into

execution)

2.quantum expiration (priority is decreased)

3.  terminal-input or terminal-output completion (priority is 

increased)

4.  other input or output completion  (priority is increased)

5.  resource availability, wake, resume, or deletion (priority

is

increased)

6.  acquisition of a lock  (priority is increased)

As events occur a process’ priority gets changed.  Interactive

users waiting are favored by raising a process’s priority following

an interaction (terminal or I/O completion) and reducing its priori-

ty as the process becomes computational.  The largest priority

increase happens after the completion of a terminal-input operation. 

Only the processes whose base priorities are between 0 and 15 can

have their  priorities altered.  These processes are known as time-

sharing processes.  Their priorities are never reduced below their



base priority or raised above 15.  This is in contrast to real-time

processes.  Their base priorities are between 16 and 31.  Because

real-time processes deal with time-critical events, they can only be

run by suitably privileged users.  Real-time processes run until

they reach completion, suspend themselves to wait for an I/O opera-

tion or until a higher_priority real-time process becomes runnable.

They are not held to quantum limits as timesharing processes are.

The scheduler also manages process-state translations.  This is done

by maintaining 32 queues for processes that are in the executable

state but are currently out of memory.  This is a separate set of

queues from the ones that keep track of processes in the executable

and in-memory state.  The swapper is responsible for moving process

between memory and the disk under command of the scheduler.

Some of the remaining states are nonexecutable processes that are

waiting for event occurences, such as page-faults, completion of an

I/O operations or the availability resources.  These processes are

linked onto one of the scheduler’s wait queues.  As the events that

a process may be waiting for occur, the software PCB is moved

between queues to reflect the state of the process.  Putting

processes into different queues according to status helps reduce the

work of locating a waiting process when an event occurs that

affects it.  For example, when a page fault completes, the sched-

uler can find the waiting process in the Page Fault Wait queue.

Its software PCB can then be linked to the appropriate executable



queue, based on its priority and whether or not it is in memory.

Figure 1 shows the possible states and transitions for a process in

the VMS system.  The arrows in Figure 1 show the events that cause

a process to move from one state to another.

VMS attempts to provide equal time to users by preempting long-run-

ning jobs and by changing process priorities to allow other

processes to execute.  This favors interactive users while also

maintaining some real-time system features.  (Levy p303)

VMS memory management issues.

The operating system manages the sharing of memory among several

programs.  It has to maintain the physical separation of memory

among the programs.  Since programs address specific memory loca-

tions, the operating system and the hardware must make each program

believe that it is the only program in memory.  The system allows

the program to operate as if it had been loaded into contiguous

physical memory.

This environment allows every program to be written as if it had a

contiguous, zero-based physical address space.  Time sharing systems

must run several programs at the same time to achieve maximum use

of the cpu The operating system must provide the logical environ-

ment that the program expects.  

There are several techniques for hiding from the program its physi-



cal location in memory.  The simplest technique for allowing sever-

al programs to coexist in memory is relocation through the use of a

hardware base register.  With this technique, each program is

loaded into contiguous physical memory.

The CPU hardware contains two special registers: a base register

and a length register.  By knowing the length of a program, and its

base physical address the operating system tricks the program into

think it is really at physical address zero.  Before a program is

started, the base register is loaded with the base physical

address.  The length register is loaded with the length of the pro-

gram.  To ensure that the program accesses only its memory the

hardware checks the length register.  The actual physical address

is found by adding the value of the base register to the program

generated address.  this allows for several programs to be stored

in memory at the same time.  The work of adding the adding the val-

ues in the base register and length register is handled by the

hardware.  Since they refer to an addresses that aren’t actual

physical memory locations, program-generated addresses are known as

virtual addresses.  

The concept of virtual addresses assumes a contiguous memory space.

However, users write programs and subprograms that can be seen as

segments into which a program has been subdivided.  Program seg-

ments in the system are written as if they were loaded into a con-

tiguous memory space that starts at memory location zero.  In order



to make segmentation possible the hardware must include a base reg-

ister and a length register for every segment.  Since every segment

must have base register and a length register, the hardware must

keep track of the appropriate registers for each segment.  Since

each segment is mapped separately, it can be located anywhere in

the memory.

Relocation and segmentation schemes can create a problem for the

operating system by increasing the complexity of memory management.

Holes are created in memory when programs are removed, either

because they have finished processing, or are waiting for an event

to finish.  This leaves odd-sized holes (fragmentation) in memory.

Programs that need to be loaded into memory may not be able to fit

in these holes.  The operating system must solve this problem by

moving segments around so it can compact all free segments into a

large contiguous space.  The operation of moving segments, and con-

solidating the memory space is expensive and time consuming.

When segments get moved around in the memory space, their corre-

sponding base registers must be changed so the proper virtual-to-

physical translation can take place.  To make this change, running

programs must be stopped which results in less useful work getting

accomplished.  

One solution to this problem is paging.  Paging is a strategy where

the programs and physical memory are divided into equal-sized blocks



called pages.  This fixes the problem of odd sized memory holes

left by varying sized segments.  It also removes the need for the

entire program to be in physical memory and the problems of frag-

mentation and compaction.  Because both programs and physical memory

are of equal size, there is no problem swapping pieces of a program

into memory.

Programs are usually larger than a page.  So most programs are many

pages in length.  Paging solves the problem of memory fragmenta-

tion, but some fragmentation does occur since the last page of a

program may be only half filled.  This is known as internal frag-

mentation, as opposed to the external fragmentation caused by seg-

mentation.  

Every program’s pages are kept track of by a list of mapping regis-

ters called a page table.  The items in the page table are page

table entries (PTEs), each has the base physical address for one

page in the program.  Each PTE also has one bit, called a Valid

bit, shows if the page is in physical memory.  The Valid bit makes

it possible to have only parts of a program in memory.  If a page

is needed that is not in physical memory the hardware calls an

operating system procedure that loads the page from disk.  With

enough address space, programs can be written for as large contigu-

ous address space really existed.  The operating system handles all

the low level work. (Levy 268-272)



Figure 2 shows an diagram of the physical address computation for a

paging machine with N-bit addresses and M-bit pages.  The virtual

address can be seen as being comprised of two components, a virtual

page number and a byte offset for that page.  The virtual page num-

ber, i, selects the page table entry for the ith page.  The table

entry contains the actual physical address for that page.  The byte

offset is used with the physical page address to form the physical

memory address of the referenced page.

A distinction that could be made between segmentation and paging is

that segmentation makes work easier for the user, while paging

makes work easier for the operating system.  Segmentation is

involves the logical portion of the program, where as paging is

deals with the physical portion of the program.  Just as a page

table entry has a Valid bit, it is possible for segment register to

also use a Valid bit.  When an attempt is made to use a segment not

loaded in primary memory, a segment fault would be generated.  With

many segment registers, a segment table and many segment table

entries are likely to be used.  The program can be separated into

many segments that can be scattered throughout physical memory.

Should the segments be constrained to an equal size, segmentation

becomes paging.  

Paging and segmentation are not mutually independent concepts.

There are some systems that offer both segmentation and paging.  In

these systems, each segment is comprised of a number of pages.



This makes it easier for the operating system to share and swap

space for different users.  In a segmentation scheme with paging

the virtual address can be comprised of three parts: a segment num-

ber, page number, and byte offset.  The segment number points to an

entry in the segment table.  The segment table entry points to the

address of the page table for that segment.  The page number of the

virtual address points to a page table entry in the selected page

table.  The actual physical address is formed by concatenating the

physical page address in the page table entry with the byte offset

from the virtual address.  

While it seems the extra level of indirection provided by segmented

paging would make things more complicated for the operating system.

It actually makes the sharing of code segments between programs

simpler.  In a one-level page table structure each program needs

entries in its own page table to point to a shared section of code

or data.  In a segmented paging structure, a page table could be

shared between two programs.  Each program's segment table would

have an entry that points to a common page table for the shared

segment.  A shared physical page could be mapped by only one page

table entry.  Since there is only one descriptor, it is easier for

the operating system to keep track of the page.  (levy p268-272)

Networking Issues

Networking capability is provided by a family of software and hardware

communication products known as DECnet.  DECnet allows Digital comput-



ers, and computers of some other manufacturers, to communicate through

a network.  DECnet supports three networking protocols: Ethernet,

Digital Data Communications Message Protocol (DDCMP), the original

DECnet protocol, and X.25, the standard public network protocol.

A DECnet network can start with two nodes, it can grow to more than

64,000 nodes.  The physical link among the nodes is of no consequence

to DECnet.  It can be linked by Ethernet, fiber optic, satellite,

leased line, or another available communication medium.  The connec-

tion method is invisible to the network users.  The nodes in different

parts of the world appear to be next door.

Nodes in a DECnet network have a peer relationship: Any nodes in the

network can communicate with each other without consulting a control-

ling node.  DECnet control is fully distributed.  Distributed control

allows each node can be equally attentive to user requests.  Since

information doesn’t have to go through a master node,  network effi-

ciency is increased.

The nodes in a DECnet network can operate under many different operat-

ing systems and platforms.  DECnet, operating on any system, provides

the same outward interface: the Digital Network Architecture (DNA).

DECnet is patterned after the International Standards Organization’s

Open Systems Interconnect (OSI) model.  The International Standards

Organization is the group chartered to recommend industry standards.



Both DNA and OSI models both specify a network architecture in terms

of layers.  Each layer has a specific function.  Other nodes have the

same corresponding layers.  Two important intercomponent relationships

are defined by the layered network architecture: protocols and inter-

faces.

The differences between the DNA and OSI model are mostly syntactical.

The seven layers of the OSI model are: 

Physical layer (hardware) - Defines the characteristics for the physi-

cal connection, i.e., controllers and device drivers.  

Data Link layer (hardware) - Defines a bit- or byte-oriented protocol

for information exchange, acknowledgment, error-detection, and retrans-

mission on the data link.  

Network layer (software) - Defines a higher-level protocol to provide

the multiplexing functions required to route messages between the

local and a remote node through the data link.  This module also pro-

vides network congestion control.  

Transport layer (software) - Creates logical to physical links and

ensures integrity of the data transfer, including all required error

recovery not handled at lower levels.  

Session layer (software) - Handles establishment and termination of

the virtual connections between two nodes.  



Presentation layer (software) - Handles data format translation of the

user’s data format and the network’s data format for such functions as

remote file access, file transfer, and virtual terminal functions.  

Application layer (software) - Allows users and applications to commu-

nicate with (i.e., use) the network.  (Bynon 3.9 - 3.11)

Physical links are dealt with at the lower layers, one through four.

Collectively they provide a transport service, dealing with the tech-

nicalities of how communication between nodes happens.  The Transport

layer connects the the physical and logical links. All functions above

the Transport layer reference logical links instead of  physical ones.  

Communication between layers of local and remote nodes is handled

through DEC's network services protocol (NSP).  The creation of logi-

cal links, delivery of data, and control messages, breaking up normal

data messages that can be broken up and transmitted, and managing the

movement of messages is the responsibility of NSP.

NSP can send or receive three types of messages: control, data, and

acknowledgment.  Logical links are established, maintained, and

destroyed by the network services protocol.  It does this by exchang-

ing control messages with other NSP modules, or even itself if the

programs are on the same node.



Since the links that are made are logical, programs running on a

DECnet system see other nodes as direct links.  When two cooperating

programs make calls to DECnet facilities to initiate a handshake pro-

cedure a logical link is made.  DECnet calls are sent between the pro-

grams that establish an agreement to communicate.  An aspect of logi-

cal links is important to system security.  This involves the fact

that both programs must agree to form the logical link.  There is a

specific order to a handshake procedure.  First, the source program

makes a call to request communication with a target program.  The tar-

get node is sent a message, CONNECT INITIATE.  The process on the tar-

get node can either reject or accept the request.  If the request is

accepted, NSP returns a CONNECT CONFIRM message.  After the link is

established, the NSPS can send and receive data and acknowledge mes-

sages for the cooperating program, until one of the programs send a

request that breaks the link.

The first layer in the OSI model considered to be system dependent is

the Session layer.  Process to process communication functions are

provided by software in the session layer.  This type of communication

is called DEcnet as task-to task communication.  This bridges the gap

between the Presentation layer and logical links.

Some task-to-task functions are: receiving connection requests for

processes, requesting logical links for processes, sending and receiv-

ing logical link data, disconnecting and aborting logical links, moni-

toring logical links, identifying processes, creating processes for



incoming connect requests, and mapping node names to node addresses.

Users can access files that reside on different nodes.  User-written

programs can create and delete remote files, open and close remote

files, and read from and write to records of remote files.  Remote

file access requires the interaction of two DECnet programs: a source

and a target.  The operating system running the source program refor-

mats the data to conform to the local file system.  Communication is

done through the data access protocol (DAP).

Users can connect a terminal to a remote node, and run interactively

on the remote node.  This allows users on one node to run programs

that reside on another. (Bynon p3-23 - 3-27)

Current state of the VMS operating  system

VMS became OpenVMS in 1992.  Digital changed the name of VMS to

OpenVMS to reflect the portability and openness of this operating sys-

tem.  This is not the same as open source operating systems such as

Linux.  OpenVMS is supported on Compaq Computer Corporation’s Alpha

series computers, VAX, MicroVAX, VAXstation, and VAXserver series com-

puters.  OpenVMS now supports POSIX standards of the IEEE, real-time

applications and transaction processing.  (DECLit p44-50)

Some new capabilities that make have kept VMS a viable operating sys-

tem include integration between OpenVMS and Windows NT, Netscape Web

Server, Java Development Kit.  

The Digital Command Language (DCL) provides users access the OpenVMS



software.  DCL commands take the form of a command name followed by

parameters and qualifiers.  Processes can be connected using PIPE.

Since Open VMS runs on Alpha, and VAX series computers, you would have

to be in just such an environment to use VMS. 

It is surprising to find out that in a world where Windows NT, and

Unix run the internet, that VMS is also being used to support web

sites.  Northern Light is one example.  
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